
Executive Summary of the Thesis

A Deep Learning Framework to Infer Functional and Spatial
Properties from CFD

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Francesco Montanaro

Advisor: Prof. Giacomo Boracchi

Co-advisor: Andrea Schillaci PhD

Academic year: 2021-2022

1. Introduction
Computational Fluid Dynamics (CFD), i.e., solving
the differential equations of the fluid motion using nu-
merical methods, plays a crucial role in a large number
of applications, ranging from health to industry. How-
ever, the ultimate objective of CFD analysis remains
often elusive: the final information relevant to the end
user may not be provided directly by the CFD itself
or expressed as an analytical function of the CFD so-
lution.
In this work, we present a data-driven framework to
extract these additional information from CFD solu-
tions. For instance, these may include details for the
diagnosis of nasal breathing difficulties or the pres-
ence of anomalies in an industrial product. This is a
challenging problem because of the huge dimensional-
ity of CFD outcomes, and the limited data that can
be typically gathered. By pursuing a Deep Learning
(DL) pipeline of pre-processing, dimensionality reduc-
tion and model training, we demonstrate that relevant
patterns can be learned from CFD data to obtain ac-
curate predictions. Several experiments support our
claim that the flow field and its convective properties
can be exploited to retrieve useful information that do
not admit an analytical definition with respect to the
input domain. By examining different examples con-
cerning the airflow around wing sections, as shown in
Figure 1, we show that even in CFD-related problems,
the extraction of effective and meaningful information
can be demanded to the algorithm itself, leading to

Figure 1: CFD solution of the airflow around a NACA
1145 airfoil.

very good predictive results. Despite of the relative
simplicity of both the geometrical characteristics and
turbulence models, we demonstrate that the combina-
tion of Deep Learning and CFD can model a system in
terms of high-level functional and spatial properties.

2. Related Work
In the last years, applications of Artificial Intelligence
in fluid mechanics have grown significantly. Most of
the researches focus on the development of data driven
models for solving the differential equations of fluid
dynamics, using CFD as input, and obtaining fluid
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mechanical quantities as output. In fact, with the
availability of large and diverse data sets, researchers
have explored methods to systematically inform tur-
bulence models with data, with the goal of quantifying
and reducing model uncertainties [1].
There are numerous examples of custom neural net-
work architectures being used to enforce physical so-
lutions for applications in fluid mechanics. Among
the several experiments, Ling et al. [2] were the first
to employ Deep Learning techniques to enforce a cor-
rection to the popular Spalart-Allmaras RANS tur-
bulence model by embedding the required Galilean
invariance into the model-predicted tensor of the tur-
bulent stresses.
To the best of our knowledge, the research aimed at
inferring quantities that cannot be directly computed
from CFD is still in its early stages. This research
area can certainly be pursued given the many appli-
cations in which it can range: from the medical to
the industrial one. A considerable contribution to this
problem was given by Schillaci et al. [3] that inspired
and contributed to this thesis project.

3. Problem formulation
The output of a CFD simulation is a set of scalar or
vector fields defined over a domain Ω ⊂ R3, which
is discretized into many small volumes or a compu-
tational mesh. These fields are obtained by solv-
ing the discretized Navier-Stokes equations together
with boundary conditions applied at the geometrical
boundary Γ ⊂ R3. For instance, Γ includes the geom-
etry of a phisical body affecting the free stream, such
as an airfoil (Figure 1).
A CFD simulation results in several output fields,
which in general are also time-dependent. However,
this work will only consider time-averaged quantites,
in particular the vector field of the mean velocity (U⃗)
and the scalar field of the mean pressure (p), both
expressed in a Cartesian reference system:

U⃗(x, y, z) =

u(x, y, z)
v(x, y, z)
w(x, y, z)

 , p(x, y, z) (1)

Given that the computational mesh is a representa-
tion of a larger geometric domain by smaller discrete
cells, all the flow quantites referring to the generic
i − th cell as well as the spatial coordinates of its
vertices, can be stacked into vectors Qi ∈ R4 and
Vi ∈ Rj×3:

Qi =


ui

vi
wi

pi

 , Vi =


(x1, y1, z1)
(x2, y2, z2)

. . .
(xj , yj , zj)

 (2)

where ui = u(xi, yi, zi) refers to the flow quantity at
the cell’s center, while (xj , yj , zj) ∈ Ω are the spatial
coordinates of its j − th vertex.

Since the spatial domain Ω is discretized into n cells,
which in our elementary case is about n ∼ 106, the
CFD output is a very large matrix:

M ⊂ R(4+j×3)×n (3)

Our goal is to build a model Φ that predicts a target
value Y associated to the input matrix M provided
by CFD:

Φ : M 7→ Y (4)

The target variable Y can be either categorical (as
for a classifier that indentifies the presence of anoma-
lies in an industrial product) or real (as for a regres-
sor that estimates some geometrical quantities from
Γ or some spatial properties from Ω). In general, we
should assume to deal with problems where training
samples are scarce, as for medical applications, where
the retrieval of diversified and reliable data is quite
challenging. Therefore, the major constraints to ad-
dress in our setting are: i) The large dimensionality
of the input data (namely n). ii) The limited number
of training samples (namely l).

4. Proposed solution
We propose our solution to the problem as a sequence
of steps of a classical Deep Learning pipeline, namely
pre-processing, dimensionality reduction and model
training.

Pre-processing
As a first pre-processing step, we compute the
velocity magnitude of each cell |Ui| and normalize it
by the free stream’s velocity magnitude |Uf | of the
CFD simulation.

|Ui| =
1

|Uf |

√
u2
i + v2i + w2

i (5)

By applying (5), vectors in (2) can be replaced by:

Qi =

[
|Ui|
pi

]
, Vi =


(x1, y1, z1)
(x2, y2, z2)

. . .
(xj , yj , zj)

 (6)

A sensing plane S is now sampled from the input
domain Ω, S ⊂ Ω, at a predefined spatial location
(xs, ys, zs) and whose direction is given by its normal
versor n⃗s = x⃗i+ yj⃗ + zk⃗.

Dimensionality reduction
Although the sensing plane represents a subset of the
input domain S ⊂ Ω, its dimension m could range
from a few hundred to even several thousands cells.
This high dimensionality allows more information
to be stored, but practically increases the possi-
bility of noise and redundancy in real world data,
making models prone to overfitting. To address the
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problem, we derive an equivalent representation of
the geometrical domain that is both compact and
meaningful. Starting from S, our goal is to perform
a series of geometrical transformations to reduce its
dimensionality as well as to standardize the input
data:

{ci | i = 1, . . . ,m} 7→ {bi | i = 1, . . . , r} (7)

where m is the number of cells from the original mesh,
while r is the decreased dimension of the new input
domain, being r < m. To reduce the dimensionality
of S, a binning operation is performed by group-
ing a large number of cells into a smaller number of
equally spaced and fixed-sized surfaces, i.e. the bins
{bi | i = 1, . . . , r}. This procedure can be performed
by adopting two different approaches:

1. One-dimensional binning : the sensing plane S is
discretized along one of the axes of the Cartesian
plane, resulting into a one-dimensional signal rep-
resenting the spatial profile of the flow quantities.

2. Two-dimensional binning : the sensing plane S
is discretized along both the axes of the Carte-
sian plane, resulting into a single-channel image
depicting the distribution of the flow quantities
across the space.

Figure 2 shows an example of both a one-dimensional
and two-dimensional binning operation performed on
the generic sensing plane S. It is an application
choice that between one type of discretization rather
than another. For example, a one-dimensional bin-
ning compresses all the information spread within the
sensing plane S along a single spatial direction. So,
it will be more suitable in simpler applications and
in general for all those where the variance of the flow
quantities is almost zero along a specific axis.
The discretization factor r corresponds to its effective
spatial resolution . Using a larger resolution allows
to represent the evolution of flow quantities across dif-
ferent regions more accurately; on the other hand, it
increases the dimensionality of the input data as well
as the computational cost. Resolution r is a key pa-
rameter that should be properly chosen based on the
problem’s complexity. For instance, domains charac-
terized by complex vortical structures, recirculation

Figure 2: One-dimensional and two-dimensional bin-
ning operation of a generic sensing plane S.

Figure 3: Different spatial resolutions for the
same sensing plane S, discretized by using a two-
dimensional binning operation.

zones, and high variability of the flow quantities, need
higher resolutions to accurately represent the evolu-
tion of fluid dynamic phenomena as well as to avoid
that relevant information are attenuated by the dis-
cretization process. Figure 3 shows different spatial
resolutions of the same sensing plane S discretized by
using a two-dimensional binning procedure.
The cells of the sensing plane S are now segmented
to fit each bin of the new discretized domain {bi | i =
1, . . . , r}, as shown in Figure 4. This process consists
of splitting cells as to make the geometrical represen-
tation to remain consistent across different regions.

Figure 4: Cells of the sensing plane S segmented to
properly fit the i− th bin bi.

The information associated to each bin is now ex-
tracted from the cells themselves. We compute the
average of the cells’ flow quantities Qi, weighted for
their corresponding surfaces. This is to ensure bigger
cells to have a major contribution on the final out-
come than the smaller ones:

p̄i =

∑ni

j=1 Aj · pj∑ni

j=1 Aj
(8)

¯|Ui| =
∑ni

j=1 Aj · |Uj |∑ni

j=1 Aj
(9)

For each bin, p̄i and |Ūi| represent respectively
the averaged value of the pressure and the velocity
magnitude, ni is the number of cells enclosed whithin
its boundaries while Aj is the surface of the j−th cell.
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Model training
The pre-processing and dimensionality reduction
steps map the CFD’s output matrix M ⊂ R(4+j×3)×n

to a compact representation S ⊂ Rr, which combines
r bins being the results of either a one-dimensional
or a two-dimensional discretization. Depending on
the nature of the target variables, any classifier or
regressor Φ can be trained from the set of labeled
input data {(Sj , Yj), j = 1, . . . , l}. In the experiments
described below, we train a Convolutional Neural
Network (CNN) to perform regression over the space
of target variables to show that a limited number
of data is often enough to provide very accurate
predictions.

5. Experiments
We describe two experimental setups to show the
flexibility and effectiveness of the proposed solution
for problems of different nature.

1. Prediction of geometrical properties of
an airfoil
a) Dataset and task : We consider a popular family
of airfoils four-digits NACA (National Advisory
Committee for Aeronautics). The shape of a NACA
airfoil is described by their four-digits code, which
corresponds to three integer numbers, and the length
of the chord c. The first number (I ) corresponds to
the first digit (integer, [0 − 9]) and quantifies the
maximum camber of the airfoil in units of c/100; the
second number (II ) corresponds to the second digit
(integer, [0 − 9]) and locates the point of maximum
camber along the chord measured from the leading
edge, expressed in c/10; the third number (III ) has
two digits (integer, [05 − 50]) and quantifies the
maximum thickness expressed in c/100. Our dataset
is composed of 3025 CFD solutions, obtained from
the corresponding numerical simulations by solving
the Reynolds-Averaged Navier–Stokes equations
(RANS). The goal is to train a regressor Φ (4) to
predict the shape of the airfoil by means of the three
numbers of its four-digits NACA code.

Φ : S 7→ (I, II, III) (10)

b) Extraction of Non-Expert-Driven features: Three
sensing planes S1−3 are extracted from the input
space Ω. Each of this is orthogonal to the airfoil
chord, being n⃗S1−3 = i⃗, and has a vertical length of
256c. The first plane S1 lies at x = −c upstream the
airfoil, the second one S2 at x = 2c downstream the
airfoil while the third one S3 at x = 10c downstream
the airfoil. Figure 5 shows an high-level view of
the three sensing planes S1−3 extracted at different
spatial sections. Since the generic airfoil has a con-
stant shape along its horizontal length, being the one
spreading along the z-axis, we expect the variance of

Figure 5: High-level view of the sensing planes S1−3

orthogonal to the airfoil chord (n⃗S1−3 = i⃗).

the flow quantities on the z-axis itself to be almost
equal to zero. Therefore, a one-dimensional binning
performed on the vertical direction y, has enough
information to properly represent the evolution of
fluid dynamic phenomena as a function of the airfoil
itself. This result in spatial signals representing the
profile of the flow quantities along the y axis at the
specified x section. Figure 6 shows the spatial profiles
of the pressure field of resolution r = 256, extracted
from planes S1−3 for a NACA 0005 airfoil.

Figure 6: Spatial profiles of the pressure field of res-
olution r = 256, extracted from planes S1−3 for a
NACA 0005 airfoil.

c) Model training and performance assessment : Since
the input data is traceable to an actual spatial sig-
nal, we train a 1D Convolutional Neural Network
(CNN-1D) to perform regression of the target vari-
ables. Being the estimated labels real numbers, they
are rounded to the closest integer to obtain the cor-
responding NACA number, therefore the problem is
also evaluated in terms of classification accuracy.
i) K-fold cross validation: A 5-fold cross validation
technique is performed to obtain a reliable evaluation
of the model’s performance. Given the whole dataset
of l = 3025 observations, the splitting criterion is of
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Sr=256
I II III |e| a[%]|e| a[%] |e| a[%] |e| a[%]

S1,p 0,13 98,35 0,21 92,23 0,27 96,10 0,20 95,56
S1,|U | 0,27 86,27 0,45 70,79 0,38 85,64 0,36 80,90
S2,p 0,08 99,31 0,11 98,86 0,09 99,12 0,09 99,10
S2,|U | 0,16 96,82 0,26 87,50 0,20 94,18 0,21 92,83
S3,p 0,21 92,62 0,33 79,09 0,25 87,63 0,27 86,45
S3,|U | 0,22 91,6 0,49 64,81 0,33 79,2 0,35 78,54

Table 1: 5-fold cross validation results on the infer-
ence of the geometrical properties of an airfoil.

using 80% (2420 samples) of the available samples for
the training set and the remaining 20% (605 samples)
for the test set. Table 1 shows the results obtained
on the test set in terms of the regression Mean Ab-
solute Error |e| and the classification Accuracy a[%]
from spatial profiles of both the pressure (p) and ve-
locity (|U |) fields with resolution r = 256. When pro-
files of the pressure field are used, the model achieves
very small absolute errors and high classification ac-
curacy, between 86% and 99,5%. As expected, some
vertical sections are more informative. This result is
not surprising as the distribution of the flow quanti-
ties tends to become uniform as the distance from the
body perturbing the free stream increases, resulting
in smoother but less informative profiles, as shown in
Figure 6 for section x = 11c.
ii) Interpolation: We study the evolution of the per-
formance in a context of data scarcity. Based on the
previous results, we restrict our study to spatial pro-
files of the pressure field to assess how the perfor-
mance vary as a function of the training set’s size.
Starting from an initial size of 100 observations, the
experiments are repeated n times by increasing, at
each iteration, the number of training samples of 100
units. As shown in Figure 7, for the most informative
section, i.e. x = 2c, about 700 training samples are
sufficient to obtain an accuracy a[%] > 90%.

Figure 7: Classification Accuracy a[%] as a function
of the training set size.

2. Prediction of spatial properties of a geomet-
ric domain
a) Dataset and task : Our dataset consists of l
CFD simulations corresponding to domains {Ωi, i =
1, . . . , l} and geometries {Γi, i = 1, . . . , l}, i.e. differ-
ent NACA airfoils. Even if the available simulations

Figure 8: High-level view of a sensing plane S parallel
to the stream (n⃗S = k⃗).

are limited, by placing a sensing plane S at a generic
location in the input space, a large number of training
samples can potentially be computed. Each sensing
plane S is a square of side 10c whose direction is par-
allel to the stream, being its normal versor n⃗S = k⃗.
Figure 8 shows an high-level view of the generic sens-
ing plane S parallel to the stream.
Our goal is to train a regressor Φ (4) to predict the
relative position of the airfoil Γ by means of its hori-
zontal xs and vertical ys distance from S:

Φ : S 7→ (xs, ys) (11)

b) Extraction of Non-Expert-Driven features: The
evolution of flow quantities cannot be considered con-
stant over any spatial direction. Therefore, we adopt a
two-dimensional discretization. This results in single-
channel images I2D depicting the distribution of flow
quantities in the space. However, we consider a one-
dimensional discretization too, resulting in spatial
profiles of the flow fields S1D. Figure 9 shows both
a one-dimensional and two-dimensional discretization
of the pressure field for the same sensing plane S.
c) Model training and performance assessment : The
algebraic characteristics of the input data lead us to
the choice of two different models, being a CNN-1D
for spatial profiles S1D, and a CNN-2D for single-
channel images of the flow quantities I2D. Both of
them are trained to perform regression over the tar-
get labels.
i) K-fold cross validation: To assess the performance

Figure 9: One-dimensional and two-dimensional dis-
cretization of the pressure field of S, located at a dis-
tance of (xs = 50c, ys = 50c) from Γ.
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of the models in problems of increasing complexity,
two configurations are considered:
• Single geometry Γ: The dataset is composed of l

CFD simulations about the same geometry Γi.
• Multiple geometries Γ: The dataset is made of
l CFD simulations computed on different shapes
{Γi, i = 1, . . . , l}. This obviously increases the
complexity of the problem, since different geome-
tries of Γ produce dissimilar effects on the flow’s
evolution.

Considering the total extent of the input domain Ω,
being Ωx ∈ [0, 550c] and Ωy ∈ [−550c, 550c], we eval-
uate the models in terms of the percentage error e[%]
of the predicted labels, as shown in Table 2.

Dataset Features Evaluation metrics
|ex| ex[%] |ey| ey[%] ē[%]

Single Γ
Sp,1D,r=100 46,12 8,39% 46,10 4,19% 6,29%

Ip,2D,r=(50×50) 19,22 3,49% 18,13 1,65% 2,57%

Multiple Γ
Sp,1D,r=100 65,32 11,9% 73,01 7,61% 9,74%

Ip,2D,r=(50×50) 24,47 4,08% 28,92 2,63% 3,36%

Table 2: 5-fold cross validation results on the infer-
ence of spatial properties.

Single-channel images Ip,2D clearly provide very accu-
rate results, with a regression error e[%] < 4%. Spa-
tial profiles Sp,1D still manage to achieve good per-
formance, reaching errors e[%] < 7%. However, the
discrepancy increases for more complex domains, i.e.
the one consisting of multiple shapes of Γ. In this case,
2D images keep the regression error below 4%, while
1D signals fail to fall below 9%. This is because data
yielded from a one-dimensional discretization contain
more damped spatial information that negatively af-
fect the quality of results obtained.
ii) Variation of the spatial resolution: To study how
the performance vary as a function of the discretiza-
tion factor r, we train different models by progres-
sively incresing the spatial resolution of the input im-
ages Ip,2D, as shown in Figure 10.

Figure 10: Different resolutions of the single-channel
images of the pressure field Ip,2D for the same sensing
plane S.

Specifically, these are sampled from the following list:
[(25× 25), (50× 50), (75× 75), (100× 100)].

Figure 11: Regression error e[%] as a function of the
discretization factor r.

As reported in Figure 11, it turns out that even with
relatively low resolutions, i.e. r = (50 × 50), the
model obtains very good results, with a regression er-
ror e[%] < 4%. Then, it reaches a plateau with higher
values of r, proving that, despite the increased details,
the input data achieved their maximum informative-
ness with respect to the problem’s complexity.

6. Conclusions
In light of the results obtained, we have demonstrated
that Deep Learning can effectively extract and learn
relevant patterns from the CFD data to predict use-
ful properties of fluid mechanical systems, when the
knowledge of the flow field does not immediately pro-
vide required high-level target information. By pursu-
ing a DL pipeline of data processing and model train-
ing, we have shown that even in CFD-related prob-
lems, the extraction of effective and meaningful infor-
mation can be demanded to the algorithm itself, lead-
ing to very good predictive results. The flexibility of
the proposed framework is demonstrated experimen-
tally through the analysis of two examples concerning
the airflow around wing sections. Despite the relative
simplicity of both the geometrical characteristics and
turbulence models, the goal of predicting the shape of
airfoils and their spatial location certainly provides in-
teresting insights into its possible future applications,
ranging from industrial to medical and beyond.
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